Skip to main content
Log in

Effect of Cysteine Substitutions on the Structural and Magnetic Properties of Fe3O4–Cysteine/RGO and Fe3O4/RGO–Cysteine Nanocomposites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We synthesized by electrostatic self-assembly route in basic solution Fe3O4–cysteine/RGO and Fe3O4/RGO–cysteine nanocomposites. In this method, electrostatic interaction was created via negatively charged surface of the reduced graphene oxide and reduced graphene oxide–cysteine sheets and positively charged surface of the Fe3O4 and Fe3O4–Cys nanoparticles in aqueous solution. The structural and magnetic properties of the prepared samples were analyzed by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM), respectively. The dependences of magnetization as a function of applied field using a vibrating sample magnetometer exhibit S-like curves, indicating a magnetic hysteresis behavior for all samples. It clearly showed that, the nanocomposites showed a reduction of saturation magnetization to the Fe3O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q.Y., Zhou, W.J., Liang, Y.: Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater. 164, 1517–1522 (2009)

    Article  Google Scholar 

  2. Chen, L., Xu, Z., Dai, H., Zhang, S.: Facile synthesis and magnetic properties of monodisperse Fe3O4/silica nanocomposite microspheres with embedded structures via a direct solution-based route. J. Alloys Compd. 497, 221–227 (2010)

    Article  Google Scholar 

  3. Kaminski, M.D., Nuñez, L.: Extractant-coated magnetic particles for cobalt and nickel recovery from acidic solution. J. Magn. Magn. Mater. 194, 31–36 (1999)

    Article  ADS  Google Scholar 

  4. Chen, C., Hu, J., Shao, D., Li, J., Wang, X.: Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for ni(II) and sr(II). J. Hazard. Mater. 164, 923–928 (2009)

    Article  Google Scholar 

  5. Chang, Q., Deng, K., Zhu, L., Jiang, G., Yu, C., Tang, H.: Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim. Acta 265(165), 299–305 (2009)

    Article  Google Scholar 

  6. Cheng, Y., Liu, Y., Huang, J., Li, K., Xian, Y., Zhang, W., Jin, L.: Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochim. Acta 54, 2588–2594 (2009)

    Article  Google Scholar 

  7. Gao, G., Wu, H., Zhang, Y., Wang, K., Huang, P., Zhang, X., Guo, S., Cui, D.: One-step synthesis of Fe3O4@C nanotubes for the immobilization of adriamycin. J. Mater. Chem. 21, 12224–12227 (2011)

    Article  Google Scholar 

  8. Wu, D.Q., Zhang, F., Liang, H.W., Feng, X.L.: Nanocomposites and macroscopic materials: assembly of chemically modified graphene sheets. Chem. Soc. Rev. 41, 6160–6177 (2012)

    Article  Google Scholar 

  9. Ren, J.G., Wu, Q.H., Tang, H., Hong, G., Zhang, W., Lee, S.T.: Germanium–graphene composite anode for high-energy lithium batteries with long cycle life. J. Mater. Chem. A 1, 1821–1826 (2013)

    Article  Google Scholar 

  10. Ren, J.G., Wu, Q.H., Hong, G., Zhang, W.J., Wu, H., Amine, K., Yang, J., Lee, S.T.: Silicon–graphene composite anodes for high-energy lithium batteries. Energy Technol. 1, 77–84 (2013)

    Article  Google Scholar 

  11. Wang, C., Zhang, Q., Wu, Q.H., Ng, T.W., Wong, T., Ren, J., Shi, Z., Lee, C.S., Lee, S.T., Zhang, W.: Facile synthesis of laminate-structured graphene sheet–Fe3O4 nanocomposites with superior high reversible specific capacity and cyclic stability for lithium-ion batteries. RSC Adv. 2, 10680–10688 (2012)

    Article  Google Scholar 

  12. Wu, Q.H., Wang, C., Ren, J.G.: Sn and SnO2-graphene composites as anode materials for lithium ion batteries. Ionics 19, 1875–1882 (2013)

    Article  Google Scholar 

  13. Ke, F.S., Huang, L., Jamison, L., Xue, L.J., Wei, G.Z., Li, J.T., Zhou, X.D., Sun, S.G.: Nanoscale tin-based intermetallic electrodes encapsulated in microporous copper substrate as the negative electrode with a high rate capacity and a long cycleability for lithium-ion batteries. Nano Energy 2, 595–603 (2013)

    Article  Google Scholar 

  14. Atar, N., Eren, T., Lütfi Yola, M., Karimi-Maleh, H., Demirdögen, B.: Magnetic iron oxide and iron oxide@gold nanoparticles anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Adv. 5, 26402–26409 (2015)

    Article  Google Scholar 

  15. Hua, R., Li, Z h: Sulfhydryl functionalized hydrogel with magnetism: synthesis, characterization, and adsorption behavior study for heavy metal removal. Chem. Eng. J. 249, 189–200 (2014)

    Article  Google Scholar 

  16. Wang, Y., Li, Z.H., Hu, D.H., Lin, C.T., Li, J.H., Lin, Y.H.: Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132, 9274–9276 (2010)

    Article  Google Scholar 

  17. Lin, L., Liu, Y., Zhao, X., Li, J.H.: Sensitive and rapid screening of T4 polynucleotide kinase activity and inhibition based on coupled exonuclease reaction and graphene oxide platform. Anal. Chem. 83, 8396–8402 (2011)

    Article  Google Scholar 

  18. Tang, L.H., Wang, Y., Li, Y.M., Feng, H.B., Lu, J., Li, J.H.: Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19, 2782–2789 (2009)

    Article  Google Scholar 

  19. Wang, Y., Shao, Y.Y., Matson, D.W., Li, J.H., Lin, Y.H.: Nitrogen-doped graphene in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010)

    Article  Google Scholar 

  20. Wang, Z.H., Xia, J.F., Zhu, L.Y., Chen, X.Y., Zhang, F.F., Yao, S.Y., Li, Y.H., Xia, Y.Z.: A selective voltammetric method for detecting dopamine at quercetin modified electrode incorporating graphene. Electroanalysis 23, 2463–2471 (2012)

    Article  Google Scholar 

  21. Wang, Z.H., Xia, J.F., Zhu, L.Y., Zhang, F.F., Guo, X.M., Li, Y.H., Xia, Y.Z.: The fabrication of poly (acridine orange)/graphene modified electrode with electrolysis micelle disruption method for selective determination of uric acid. Sens. Actuators B: Chem. 161, 131–136 (2012)

    Article  Google Scholar 

  22. Wang, X.L., Bai, H., Yao, Z.Y., Liu, A.R., Shi, G.Q.: Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J. Mater. Chem. 20, 9032–9036 (2010)

    Article  Google Scholar 

  23. Wang, X.L., Bai, H., Jia, Y.Y., Zhi, L.J., Qu, L.T., Xu, Y.X., Li, C., Shi, G.Q.: Synthesis of CaCO3/graphene composite crystals for ultra-strong structural materials. RSC Adv. 2, 2154–2160 (2012)

    Article  Google Scholar 

  24. Pradhan, P., Giri, J., Rieken, F., Koch, C., Mykhaylyk, O., Doblinger, M., Banerjee, R., Bahadur, D., Plank, C.: Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release 142, 108–121 (2010)

    Article  Google Scholar 

  25. Okushima, S., Nisisako, T., Torii, T., Higuchi, T.: Controlled production of monodisperse double emulsions by two-step droplet break-up in microfluidic devices. Langmuir 20, 9905–9908 (2004)

    Article  Google Scholar 

  26. Ma, E.L., Li, J.J., Zhao, N.Q., Liu, E.Z., He, C.N., Shi, C.S.: Preparation of reduced graphene oxide/Fe3O4 nanocomposite and its microwave electromagnetic properties. Mater. Lett. 91, 209–212 (2013)

    Article  Google Scholar 

  27. Zhou, C.J., Zhou, W.J., Zhang, H.X., Wang, H.Y., Li, J., Zhou, S.H., Wang, J.Y., Liu, J., Luo, B.S., Zou, J.D.: Preparation of Fe3O4-embedded graphene oxide for removal of methylene blue. Arab. J. Sci. Eng. 39, 6679–6685 (2014)

    Article  Google Scholar 

  28. Jing, L.Y., Fu, A.P., Li, H.L., Liu, J.Q., Guo, P.Z., Wang, Y.Q., Zhao, X.S.: One-step solvothermal preparation of Fe3O4/graphene composites at elevated temperature and their application as anode materials for lithium-ion batteries. RSC Adv. 4, 59981–59989 (2014)

    Article  Google Scholar 

  29. Buyukozturk, F., Benneyan, J.C., Carrier, R.L.: Impact of emulsion-based drug delivery systems on intestinal permeability and drug release kinetics. J. Control. Release 142, 22–30 (2010)

    Article  Google Scholar 

  30. Gai, S.L., Yang, P.P., Li, C.X., Wang, W.X., Dai, Y.L., Niu, N., Lin, J.: Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 20, 1166–1172 (2010)

    Article  Google Scholar 

  31. Wu, Y., Fei, Z.Z., Lee, L.J., Wyslouzil, B.E.: Coaxial electrohydrodynamic spraying of plasmid DNA/polyethylenimine (PEI) polyplexes for enhanced nonviral gene delivery. Biotechnol. Bioeng. 105, 834–842 (2010)

    Google Scholar 

  32. Gupta, A.K., Wells, S.: Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci. 3, 66–73 (2004)

    Article  Google Scholar 

  33. Kim, D.K., Zhang, Y., Voit, W., Rao, K.V., Muhammed, M.: Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225, 30–36 (2001)

    Article  ADS  Google Scholar 

  34. Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  Google Scholar 

  35. Honda, M., Baba, Y., Shimoyama, I., Sekiguchi, T.: A fluorescence XAFS measurement instrument in the soft x-ray region toward observation under operando conditions. Rev. Sci. Instrum. 86, 035103 (2015)

    Article  ADS  Google Scholar 

  36. Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A., Solanki, P.R.: Lead and chromium adsorption from water using L-cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci. Rep. 7, 1–15 (2015)

    Google Scholar 

  37. Xiao, J., Lv, W., Xie, Z., Tan, Y., Song, Y., Zheng, Q.: Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via ππ interactions. J. Mater. Chem. A 4, 12126 (2016)

    Article  Google Scholar 

  38. Chen, Y., Song, B., Tang, X., Lu, L., Xue, J.: One-step synthesis of hollow porous Fe3O4 beads—reduced graphene oxide composites with superior battery performance. J. Mater. Chem. 22, 17656–17662 (2012)

    Article  Google Scholar 

  39. Honda, M., Baba, Y., Shimoyama, I., Sekiguchi, T.: A fluorescence XAFS measurement instrument in the soft x-ray region toward observation under operando conditions. Rev. Sci. Instrum. 86, 035103–5 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kheirollah Mehrani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahebalzamani, H., Mehrani, K., Hosseini, H.R.M. et al. Effect of Cysteine Substitutions on the Structural and Magnetic Properties of Fe3O4–Cysteine/RGO and Fe3O4/RGO–Cysteine Nanocomposites. J Supercond Nov Magn 32, 1299–1306 (2019). https://doi.org/10.1007/s10948-018-4779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4779-4

Keywords

Navigation